3,213 research outputs found

    Tuning Bandgap and Energy Stability of Organic-Inorganic Halide Perovskites through Surface Engineering

    Full text link
    Organohalide perovskite with a variety of surface structures and morphologies have shown promising potential owing to the choice of the type of heterostructure dependent stability. We systematically investigate and discuss the impact of 2-dimensional molybdenum-disulphide (MoS2), molybdenum-diselenide (MoSe2), tungsten-disulphide (WS2), tungsten-diselenide (WSe2), boron- nitiride (BN) and graphene monolayers on band-gap and energy stability of organic-inorganic halide perovskites. We found that MAPbI3ML deposited on BN-ML shows room temperature stability (-25 meV~300K) with an optimal bandgap of ~1.6 eV. The calculated absorption coefficient also lies in the visible-light range with a maximum of 4.9 x 104 cm-1 achieved at 2.8 eV photon energy. On the basis of our calculations, we suggest that the encapsulation of an organic-inorganic halide perovskite monolayers by semiconducting monolayers potentially provides greater flexibility for tuning the energy stability and the bandgap.Comment: 19 pages (single sided), 5 figures, 1 Tabl
    • …
    corecore